На главную | Каталог статей | Карта сайта

КВАНТОВАЯ ФИЗИКА

6. Корпускулярно-волновой дуализм. Соотношение неопределённостей Гейзенберга

Гипотеза де Бройля. Пытаясь преодолеть трудности боровской модели атома, Л. де Бройль выдвинул в 1924 г. гипотезу, что частицы вещества (например, электроны) обладают волновыми свойствами. Частица с энергией E и импульсом, абсолютная величина которого равна p , может быть сопоставлена с волной, дебройлевская длина волны которой

(6.1)

Согласно гипотезе де Бройля, условие квантования орбит в атоме водорода mvr = nh/(2 p ) при разных n означает, что (в простейшем случае) на длине окружности орбиты укладывается целое число дебройлевских волн . В этом случае атом водорода находится в стационарном состоянии с определенной энергией.

Если гипотеза де Бройля верна, то частицы вещества должны при определенных условиях проявлять свойства, характерные только для волн, например, демонстрировать интерференцию и дифракцию на препятствии.

Ввиду достаточно большой величины импульса электрона в атоме, соответствующая длина волны де Бройля для электронов очень мала. Так, для электрона на первой боровской орбите (см. Опыты Резерфорда. Модель атома Бора) l  = 0,4 нм, т.е. порядка величины расстояния между атомами в кристаллической решетке. Волновые свойства электрона, если они действительно есть, могут наблюдаться только в случае, когда размеры препятствий сравнимы с длиной волны.

В то же время для макроскопического тела (допустим, теннисного мяча, летящего со скоростью 25 м/с) длина волны де Бройля ничтожно мала, ~ 10 -34  м, что на 24 порядка меньше размера атома! Таким образом, волновые свойства макроскопических тел наблюдаться не могут.

Экспериментальные проявления корпускулярно-волнового дуализма .

1. Дифракция электронов . В начале 1927 г. Ч. Дэвиссон и Л. Джермер убедительно подтвердили волновую природу электронов. Пучок электронов ускорялся в электрическом поле, проходя разность потенциалов U . При этом электроны приобретали кинетическую энергию mv 2 /2 = eU , т.е. импульс p = mv = (2meU) 1/2 .

Затем пучок электронов направлялся на мишень, состоявшую из сравнительно крупных кристаллов никеля. Подвижный детектор измерял количество электронов, рассеянных под разными углами. Возникшая картина полностью соответствовала картине рассеяния рентгеновских лучей на кристалле. Пользуясь условием Брэгга, Дэвиссон и Джермер определили длину волны электронов l  = h/p и сравнили с вычислениями, основанными на гипотезе де Бройля, получив прекрасное согласие.

Вывод: при определенных условиях электрон и другие микрочастицы проявляют волновые свойства.

2. Эффект Комптона . В 1922 г. А. Комптон, исследуя рассеяние рентгеновских лучей с длиной волны 0,0710 нм на углеродной мишени, обнаружил, что после рассеяния регистрируются не только лучи с той же длиной волны, но и лучи с длиной волны 0,0734 нм. Таким образом, в процессе рассеяния на электронах часть рентгеновского излучения меняла свою длину волны в сторону увеличения. Явление получило название эффекта Комптона.

Объяснение этого эффекта с позиций классической волновой теории света оказалось невозможным. Однако, если принять квантовую точку зрения, высказанную А. Эйнштейном в 1905 г., что свет состоит из фотонов, то наблюдаемое явление находит простое объяснение, полностью согласующееся с опытом.

Вывод: при определенных условиях световая волна ведет себя как поток частиц с определенными энергией и импульсом .

Идеи квантовой механики. Соотношение Гейзенберга . Экспериментальные факты (дифракция электронов, эффект Комптона, фотоэффект и многие другие) и теоретические модели, вроде боровской модели атома, с определенностью свидетельствуют, что законы классической физики становятся неприменимыми для описания поведения атомов и молекул и их взаимодействия со светом. В течение десятилетия между 1920-м и 1930-м гг. ряд выдающихся физиков ХХ в. (де Бройль, Гейзенберг, Борн, Шредингер, Бор, Паули и др.) занимался построением теории, которая могла бы адекватно описать явления микромира. В результате родилась квантовая механика , ставшая основой всех современных теорий строения вещества, можно сказать, основой (вместе с теорией относительности) физики ХХ в.

Законы квантовой механики применимы в микромире, в то же время мы с вами являемся макроскопическими объектами и живем в макромире, управляющимся совершенно иными, классическими законами. Поэтому неудивительно, что многие положения квантовой механики не могут быть проверены нами непосредственно и воспринимаются как странные, невозможные, непривычные. Тем не менее квантовая механика является, наверное, самой подтвержденной на опыте теорией, так как следствия расчетов, выполненных по законам этой теории, используются практически во всем, что нас окружает, и стали частью человеческой цивилизации .

К сожалению, используемый квантовой механикой математический аппарат довольно сложен и идеи квантовой механики могут быть изложены лишь словесно и поэтому недостаточно убедительно. С учетом этого замечания попытаемся дать хоть какое-то представление об этих идеях.

Основным понятием квантовой механики является понятие квантового состояни я какого-то микрообъекта, или микросистемы (это может быть отдельная частица, атом, молекула, совокупность атомов и т.п.). Состояние может быть охарактеризовано заданием квантовых чисел: значений энергии, импульса, момента импульса, проекции этого момента импульса на какую-то ось, заряда и т.п. Как следует из модели Бора для атома водорода, энергия и другие характеристики могут в некоторых случаях принимать лишь дискретный ряд значений, нумеруемых числом n = 1, 2, ... (в этом пункте квантовая механика полностью противоречит классической физике).

Таким образом, квантовая механика в общем случае оперирует не с определенными результатами измерений тех или иных физических величин, а лишь с вероятностями того, что при измерении будет получено то или иное значение величины. Этим квантовая механика принципиально отличается от классической физики.

Другое фундаментальное отличие заключается в том, что не всегда можно измерить какую-то величину со сколь угодно большой точностью. Сам акт измерения в микромире оказывает необратимое влияние на измеряемый объект.

Этот факт выражается в соотношении неопределенностей Гейзенберга :

(6.2)

Здесь  = h/(2p) - постоянная Планка "аш с чертой", которая столь часто фигурирует в большинстве формул квантовой механики, что физики предпочитают употреблять ее вместо h.

Численно

Смысл соотношения неопределенностей заключается в том, что невозможно одновременное измерение дополнительных (по терминологии Н. Бора) величин, например, координаты и импульса микрообъекта . Всякая попытка увеличить точность измерения координаты приводит к потере информации об импульсе, и наоборот. Следует ясно понимать, что речь не идет о несовершенстве приборов для измерения. Ограничения, накладываемые соотношением неопределенностей, носят принципиальный характер, не зависящий от устройства приборов. Эти ограничения являются законом, действующим в микромире.

 




На главную | Каталог статей | Карта сайта
Яндекс.Метрика


При любом использовании материалов установите обратную ссылку на своем сайте.
<a href="http://lovi5.ru/" target=_blank>Рефераты, шпаргалки</a>